Framework Integration#
The AMD Container Toolkit is framework-agnostic but works seamlessly with popular machine learning, HPC, and AI frameworks that require GPU access, including:
TensorFlow (ROCm builds)
PyTorch (ROCm builds)
ONNX Runtime
OpenMPI + ROCm
Custom AI/ML workflows
Typical Example:#
Enabling easy container-based development and deployment across AMD GPU systems.
1. TensorFlow#
Run ROCm-enabled TensorFlow:
sudo docker run --rm --runtime=amd -e AMD_VISIBLE_DEVICES=0 tensorflow/tensorflow:rocm-latest
2. PyTorch#
Use ROCm-enabled PyTorch containers:
sudo docker run --rm --runtime=amd -e AMD_VISIBLE_DEVICES=all rocm/pytorch:latest
3.Triton Inference Server#
Serving models with Triton using AMD GPUs is supported by adapting container images for ROCm.
Best Practices#
Always use container images tested against the matching ROCm version.
Use environment variables or CDI device selection carefully in multi-GPU setups.