Installation Guide#

This guide walks through the process of installing the AMD GPU device plugin on a Kubernetes cluster.

Prerequisites#

Before installing the AMD GPU device plugin, ensure your environment meets the following requirements:

System Requirements#

  • Kubernetes: v1.18 or higher

  • AMD GPUs: ROCm-capable AMD GPU hardware

  • GPU Drivers: AMD GPU drivers or ROCm stack installed on worker nodes

  • Helm: v3.2.0 or later (if using the health check feature or GPU Operator)

Driver Installation#

If you haven’t installed the AMD GPU drivers yet, follow the official ROCm Installation Guide

Installation Steps#

Choose one of the following options based on your requirements.

Option 1: Standard Device Plugin#

Use this option if you only need basic GPU allocation without health monitoring.

Using Pre-defined YAML File: You can use the pre-defined YAML file provided in this repository. Run the following command:

kubectl create -f k8s-ds-amdgpu-dp.yaml

Pulling from the Web: Alternatively, you can directly pull the YAML file from the repository:

kubectl create -f https://raw.githubusercontent.com/ROCm/k8s-device-plugin/master/k8s-ds-amdgpu-dp.yaml

Option 2: Device Plugin with Health Checks#

Use this option if you need GPU health monitoring capabilities in addition to GPU allocation.

Step 1: Install AMD Device Metrics Exporter#

The health check feature requires the AMD Device Metrics Exporter to be installed. This service provides GPU metrics and health information that the device plugin connects to.

Create a metrics-exporter-values.yaml file with the following content:

platform: k8s
nodeSelector: {} # Optional: Add custom nodeSelector
image:
  repository: docker.io/rocm/device-metrics-exporter
  tag: v1.2.0
  pullPolicy: Always
service:
  type: ClusterIP
  ClusterIP:
    port: 5000
# Enable GRPC socket for device plugin health monitoring
socket:
  enable: true
  path: /var/lib/amd-metrics-exporter/amdgpu_device_metrics_exporter_grpc.socket
  permissions: 0777
volumeMounts:
  - name: socket-dir
    mountPath: /var/lib/amd-metrics-exporter
volumes:
  - name: socket-dir
    hostPath:
      path: /var/lib/amd-metrics-exporter
      type: DirectoryOrCreate

Install the metrics exporter with Helm:

helm install metrics-exporter \
  https://github.com/ROCm/device-metrics-exporter/releases/download/v1.2.0/device-metrics-exporter-charts-v1.2.0.tgz \
  -n kube-system -f metrics-exporter-values.yaml

Step 2: Install Device Plugin with Health Checks#

After successfully installing the metrics exporter, deploy the device plugin with health check capability:

Using Pre-defined YAML File: You can use the pre-defined YAML file provided in this repository. Run the following command:

kubectl create -f k8s-ds-amdgpu-dp-health.yaml

Pulling from the Web: Alternatively, you can directly pull the YAML file from the repository:

kubectl create -f https://raw.githubusercontent.com/ROCm/k8s-device-plugin/master/k8s-ds-amdgpu-dp-health.yaml

Option 3: Using AMD GPU Operator#

The AMD GPU Operator provides a comprehensive solution that installs and manages:

  • AMD GPU device plugin

  • Node labeler

  • Device metrics exporter

  • Driver installation and updates

See the GPU Operator Documentation for installation instructions and additional information.

Install Node Labeler (Optional)#

The AMD GPU Node Labeler automatically detects and labels nodes with detailed GPU properties, enabling more precise workload scheduling.

The node labeler requires:

  • A service account with permissions to modify node labels

  • Privileged container access for GPU discovery

Deploy the node labeler using the provided DaemonSet manifest:

kubectl create -f k8s-ds-amdgpu-labeller.yaml

After deployment, nodes with AMD GPUs will be automatically labeled with properties including:

  • Device ID

  • Product Name

  • Driver Version

  • VRAM Size

  • SIMD Count

  • Compute Unit count

  • GPU Family information

  • Firmware and Feature Versions

The labels are added with two prefixes:

  • amd.com/gpu.* - Current prefix

  • beta.amd.com/gpu.* - Legacy prefix (maintained for backwards compatibility)

Verify the labels on your nodes using one of these commands:

# View all GPU-related labels
kubectl get nodes -o custom-columns=NAME:.metadata.name,LABELS:.metadata.labels

# Filter for current GPU labels
kubectl get nodes --show-labels | grep "amd.com/gpu"

# Filter for legacy GPU labels
kubectl get nodes --show-labels | grep "beta.amd.com/gpu"

Example labels for an AMD MI300X GPU:

amd.com/gpu.cu-count=304
amd.com/gpu.device-id=74a1
amd.com/gpu.family=AI
amd.com/gpu.product-name=AMD_Instinct_MI300X_OAM
amd.com/gpu.simd-count=1216
amd.com/gpu.vram=192G

Verify the Device Plugin Installation#

Check the status of the pods:

kubectl get pods -n kube-system

Describe the device plugin pod to see logs and events:

kubectl describe pod <device-plugin-pod-name> -n kube-system

After deploying the device plugin, verify that your AMD GPUs are properly recognized as schedulable resources:

# List all nodes with their AMD GPU capacity
kubectl get nodes -o custom-columns=NAME:.metadata.name,GPU:"status.capacity.amd\.com/gpu"

NAME             GPU
k8s-node-01      8

Troubleshooting#

If the device plugin pods are not running, check the logs:

kubectl logs -n kube-system <amdgpu-device-plugin-pod-name>

Common issues include:

  • GPU drivers not installed correctly

  • ROCm stack not installed or misconfigured

  • Insufficient permissions for the device plugin to access GPU devices

Uninstalling the Device Plugin#

To uninstall the device plugin, delete the DaemonSet using the same manifest file you used for installation:

If you installed the standard device plugin (Option 1):

kubectl delete -f k8s-ds-amdgpu-dp.yaml
# Or using the web URL
kubectl delete -f https://raw.githubusercontent.com/ROCm/k8s-device-plugin/master/k8s-ds-amdgpu-dp.yaml

If you installed the device plugin with health checks (Option 2):

kubectl delete -f k8s-ds-amdgpu-dp-health.yaml
# Or using the web URL
kubectl delete -f https://raw.githubusercontent.com/ROCm/k8s-device-plugin/master/k8s-ds-amdgpu-dp-health.yaml